Introduction

Globally, 62.6% of all elasmobranchs are threatened by extinction which is the highest percentage out of all vertebrate groups (Daly et al. 2014). Climate change, habitat loss and overfishing are the key extinction risks leading to many population declines.

The silky shark (Carcharhinus falciformis), considered vulnerable by the IUCN Red List, is a circumtropical, pelagic species that is under pressure by these extinction risks. Silky sharks have faced population declines of 46-98%, yet they are poorly studied in the Atlantic Ocean (Cortis et al. 2007, Rigby et al. 2017). One reason that silky sharks have experienced such dramatic declines in this region is because they co-occur with large around fish aggregation devices (FADs). This leads to them being the second highest shark caught as bycatch (accidentally captured) around (Daly et al. 2014).

Our study focuses on the horizontal and vertical movement behavior of silky sharks. This information tells us where in the water column and ocean silky sharks prefer. By conducting our research in the Exuma Sound, we can increase the information known on the movements of silky sharks in the Atlantic, and better inform on conservation and management of this species.

Objective

To characterize the horizontal and vertical movements of silky sharks in the Western Atlantic.

Methods

We targeted silky sharks through longlining and targeted fishing (Figure 2A and 2B). When a shark was caught, we secured it parallel to the boat where we took measurements, samples, and tagged the animal. Tags used included blood, fin and muscle, and are used to help determine diet based on stable isotope analysis (Figure 2C).

To tag our sharks we use spaghetti tags for identification, and pop-up satellite archival tags (PSAT) for collecting movement data (Figure 2D). The PSAT tag, which will pop-off after 6 months, takes three measurements: temperature which gives us its thermal preference, light levels which show estimated location, and pressure which tells us depth.

Results & Discussion

To the right we can see a table which lists the size and number of these sharks tagged in the Exuma Sound (Figure 3A). This table tells us that we are catching mostly juveniles which are under the size of maturity for a silky shark (220cm). We collected a total of 20 silky sharks have been caught in the Western Atlantic; thus far (Figure 3A). The average size of these 20 sharks was roughly 140 cm (Figure 3B). This tells us that we are catching mostly juveniles which are under the size of maturity for a silky shark (220cm).

Horizontal Movement

We believe that all of the juveniles captured in the Exuma Sound stayed there. This is supported by the tagging information from Silky 4 (Figure 4A). The animal was originally tagged in March of 2018 with a spaghetti tag and recaptured and tagged with a satellite tag in April of 2019, both in the Exuma Sound. The tag popped off in the Exuma Sound as well, furthering the point that these sharks do not leave this habitat. In addition, the light-based geolocation data did not show a clear and distinct migratory pattern which led us to believe that the silky shark stayed in the Exuma Sound (Figure 4B).

Vertical Movement

Additionally, data from the tag mentioned above indicate the temperature and depth preferences. Of these data, most points fall between 23° and 29°C and 0-15m in depth. These points indicate that the shark preferred shallower, warmer water, also known as the upwelling zone. This puts silky sharks at an increased risk of being caught as bycatch in tuna fisheries because silky sharks and tuna have coexisted in the same portion of the water column (Figure 5).

Conclusions

This study is the first to focus on the long-term movements of silky sharks in the Western Atlantic Ocean. All of the silky sharks that have been caught in the Exuma Sound have been juveniles. Thus far, the tagging data have indicated that they all stayed within the Exuma Sound.

This has led us to believe that there is something unique about the habitat of the Exuma Sound as the juvenile silky sharks chose to stay in this area instead of making larger scale movements like others of similar size do in different habitats. This is beneficial for these animals because if they remain in the Exuma Sound they are protected within the Bahamas national shark sanctuary (Figure 6).

As these sharks mature, it is likely that they will begin to make larger scale movements outside of the protected area of The Bahamas into open, international waters. This will greatly increase the susceptibility of these sharks to potential impacts to both targeted fisheries and bycatch which is a major cause of mortality for silky sharks. Because of this, we will be shifting the focus of our study to tagging only adult silky sharks because we need to know where they are going in order to implement conservation methods. Understanding their movement is important so we can begin communicating with law makers in the future to make conservation possible. The information in this study has the power to help conserve silky sharks throughout the entirety of their life.

References


Figure 6: A map of the Bahamas shark sanctuary.

Acknowledgements

We would like to thank the following for their support and contributions: Lauren Barnes, Olivia Brzezinski, The Island School, Cape Eleuthera Institute (CEI), the EXERF team, Florida International University (FIU), the University of Glasgow, and the National Oceanic and Atmospheric Administration.