Introduction

The **Island**

The Earth's surface is comprised of 43% high seas and less than 1% of these high seas, or pelagic habitats, are protected (Baum 2006). The high seas are any areas of ocean outside of nations' exclusive economic zones. There are 650,000 km² of oceans in The Bahamas and pelagic waters make up 73% of them, yet 0% of these waters are being protected. One way that many countries like The Bahamas are working towards marine conservation is through the Caribbean Challenge, which is a declaration created by the United Nations (UN) which committed to protect 20% of marine resources by 2020. Countries are achieving this challenge by creating Marine Protected Areas (MPAs) which restrict human use in specific areas and create catch limits. The creation of MPAs leads to greater diversity of fish, more marine life, functional food webs and healthier ecosystems, but these are generally only sited in coastal waters, ignoring the open ocean entirely despite its ecological and economic importance.

Cape

Eleuthera

Institute

Figure 1: Proposed Bahamas National Trust (BNT) marine protected areas, as denoted by the areas highlighted in yellow, that will fulfil the Caribbean Challenge. Only shallow water environments are proposed for protection in this initiative.

Objective

To characterize the pelagic fish community in the Exuma Sound from 0-400m deep.

Methods

We set up longlines at three different fishing sites, all at equal distances from the wall but at varying depths. We fished at these sites at different times of the day and night to discover where and when pelagic fishes occur in the Exuma Sound. We used different hook sizes, leader types and bait types to maximize our ability to catch a wide range of pelagic fishes.

After we set the long line we waited 4-5 hours before hauling the line back onto the boat. When a fish was caught, we took measurements which helped us identify the fish's maturity as well as took samples including DNA, muscle, and blood. After these were completed, we tagged and released the fish. All of our samples were brought back to the Cape Eleuthera Institute to be used by fellow researchers for other research projects.

Figure 2: (A) Map of Cape Eleuthera overlaid by a depth chart with our sites indicated by the pins and the Cape Eleuthera Institute indicated by the star. The warmer colors indicate shallow waters while the cooler colors indicate deep waters. (B) A Caribbean reef shark being measured by an Island School student.

Characterizing the Pelagic Fish Community of The Exuma Sound Fisher Clark, Daniel Eyal, Lyla Forman, Lucy Hensley, Wyatt Huggins, Summer Stagman, Carlton Taylor II Advisors: Brendan Talwar and Candace Fields

Figure 4: Four of the species caught during pelagic longline surveys: (A) tiger shark (Galeocerdo cuvier) (B) snake mackerel (Gempylus serpens) (C) silky shark (Carcharhinus falciformis) (D) oceanic whitetip shark (Carcharhinus longimanus).

an Size (cm)	At Vessel Mortality (%)	Sex	Stage
179	0	Μ	IM
70	0	F	IM
112	33	Μ	IM
92	0	F	IM

the pelagic zone to try to discover new information.

This semester we caught fish that have never been seen before in this area. It is important to continue discovering more about the pelagic region as we know so little about what animals occur in the open ocean or what their movements are. Though our data this semester is limited, this study will continue in the future and we expect catch rates to increase in the coming months due to the typical migratory patterns associated with water temperatures decreasing.

We hope to gain a better understanding of the pelagic region in the future after collecting more samples to build on our data set and deploying satellite tags to track animal movement.

Adina E, Musick JA, Smale M (2006) Carcharhinus longimanus. IUCN 2012 Red list of threatened species. Available: <u>www.iucnredlist.org</u>. essed 2 July 2012.

eep Sea Research Part II. Ecological bridges and barriers in pelagic ecosystems. Pg. 182-192 scoe, K. Dana. & Maxwell, M. Sara. & Kudela, Raphael. & Crowder, B. Larry. & Croll, Donald. (2016). Are we missing important areas in pelagic marine Lucy. & Grubbs, D. R. (2015) First description of deep-water elasmobranch assemblages in the Exuma Sound, The Bahamas. Deep Sea Research II. *lagic ecosystem processes*. Marine Ecology Progress Series. Seki, T., Taniuchi, T., Nakano, H. and Shimizu, M., 1998. Age, growth and reproduction of the oceanic whitetip shark from the Pacific Ocean. *Fisheries* Science, 64(1), pp. 14-20.

We would like to thank the following for their support and contributions: **Our advisors: Brendan Talwar and Candace Fields** CEI interns: Juliette Lee, Jessica Dehn, Emmy Feddor, Lily Park, Jack Dales **The FADs and Communications Teams**

Conclusions

Some pelagic predators are not sustainable to fish because of their small and easily overexploited populations. Our study has taken place for three months and we were looking at

Figure 5: Island school students deploying a cattle tag (A) and a dart tag (B). In the future we hope to additionally deploy satellite tags.

References

- scoe Dana K., Hobdayb Alistair J., Carlisle Aaron, Scales Kylie, Eveson J. Paige, Arrizabalagad Haritz , Druone Jean Noel, Fromentinf Jean Marc . (2016)
- nservation? Redefining conservation hotspots in the ocean. Endangered Species Research. Pg. 229-237 Brooks, J. Edward. & Brooks, M.L. Annabelle. & Williams, Sean. & Jordan, K.B. Lance, & Abercrombie, Debra. & Chapman, D. Demian. & Howey-Jordan, A.
- Duffy, J. Emmett. & Stachowicz, J. John. (2006). Why biodiversity is important to oceanography: potential roles of genetic, species, and trophic diversity in
- Norse, E. A. & S. Brooke & W.W.I. Cheung & M. R. Clark & I. Ekeland, R. Froese & K. M. Gjerde & R. I. Haedrich & S. S. Heppell & T. Morato & I. E. Morgan & D. Pauly & U. R. Sumaila & R. Watson. (2012). Sustainability of Deep-sea fish. MARINE ECOLOGY PROGRESS SERIES. Marine Policy 36(2): 307–320.

Acknowledgements