Assessing diurnal foraging patterns in green sea turtles (Chelonia mydas)

By: Ethan Bankowski, Liam Carroll, James Cummings, Annabel Dewing, Bryson Lipson, Isabel Markey

Advisors: Meagan Gary and Chelsea Begnaud

Background

Since the 1700s, sea turtle populations in the Caribbean have declined by 95-97%. In 2009, The Bahamian Department of Marine Resources placed a ban on the possession and harvesting of sea turtles and sea turtle products (Bjorndal and Bolten, 2010). Green sea turtles (Chelonia mydas) (Fig. 1) are one of the largest marine herbivores and therefore play an important role in tropical marine ecosystems by consuming vast quantities of seagrasses. In the Caribbean, they feed primarily on turtle grass (Thalassia testudinum). Green turtles consume the bottom half of the blade which contains higher nutrients and lower lignin levels (Bjorndal and Moran, 2007). Grazing helps to improve the health of seagrass beds by allowing the blades to grow back with a higher nutritional value (Moran and Bjorndal, 2007).

There are three methods of obtaining information about an animal’s diet including stable isotope analysis, fecal sample collection, and esophageal lavage. An esophageal lavage is the only species specific and non-lethal way of collecting a diet sample. Previous studies have assessed foraging habits of green turtles using esophageal lavage; however, this method has not been successful in The Bahamas. Sampling may be more effective if there is an greater understanding of turtle feeding times. Green turtle feeding patterns may vary due to factors such as tidal state and time of day possibly affecting the size of diet samples (Taquet et al, 2006).

By assessing lavage samples from different tidal states (high and low) and times of day (morning, midday, afternoon), we hope to determine if these factors affect when juvenile green turtles forage in order to maximize our diet sample mass. This information will allow for a better understanding of this important life stage. Our purpose is to inform the scientific community of the ideal time of day and tidal state to collect green turtle diet samples. To achieve this, we:

- Determined if tide and time of day affect when juvenile green sea turtles forage
- Assessed if tide levels and time of collection affect diet sample mass

Methods

Diet Sample Collection and Analysis

1. Encircle turtles at their grazing patch with a human scare line and direct turtles into seine net for capture (Fig. 3).
2. Collect diet sample using esophageal lavage. To do this, a lubricated veterinary grade tube is placed into the esophagus while sea water is pumped. The diet sample is collected in a sieve (Fig. 4).
3. Each diet sample was weighed and separated, based on species, into the three species of seagrass and other diet components (Fig. 5).

Green Sea Turtle Foraging Times

1. Deploy GoPro cameras around perimeter of established grazing patches. Video segments record at set tidal state and time of day (Fig 6).
2. Review video footage and recording duration of foraging and maximum of turtles present, recording individual species and feeding (Fig. 7).

Results

Capture and Diet Sample Results

- 29 diet samples were collected
- Straight carapace length (SCL) ranged from 22.5 - 41.4 cm (mean = 32.5 ± 4.9 cm).
- Diet sample mass ranged from 0.002-0.703 g (mean = 0.106 ± 0.154 g) with the largest samples collected midday (Fig. 8).
- The primary component of the diet samples was turtle grass (Thalassia testudinum).

Green Sea Turtle Foraging Times

- Seven green sea turtles observed on GoPro footage.
- 10 hours and 39 minutes of footage was collected.
- More turtles were observed in the afternoon and during low tide (Fig. 9, Fig. 10).
- The high variability may be due to the small sample size.

Discussion

The diet samples collected were relatively small with a mean weight of 0.106 ± 0.154 g. There were no statistically significant trends between diet sample size and time of day or tidal state. Even though video footage showed that more turtles were observed per hour in the afternoon (Fig. 9) and low tide (Fig. 10), due to the high variability of the data this trend was not statistically significant. Green turtles may be grazing equally at all hours of the day and tidal state. Variables such as, small sample size and the presence of a residential tiger shark, may have influenced sea turtle feeding behavior. Turtles were observed moving shallower when the tiger shark was present and expending energy exuding the shark instead of feeding. It may be equally effective to collect diet samples at any tidal state or time of day, this will be more conclusive as the sample size increases.

Acknowledgments

- Annabelle Brooks for support and guidance with this project
- Sam Giertz for his help in the field and in the lab
- Kate Kincade, Cam Bagasse, Liz Lingardy for coordinating the Island School class
- Cape Eleuthera Institute Interns and Earthwatch Institute Volunteers for their help in the field and the lab

Literature cited

Bjorndal, K.A. and Bolten, A.B. A. (2007). 106 Changes Protect Sea Turtles in The Bahamas: Long-term Efforts Rewarded. SeaTurtles.org (Fig. 1).
Bjorndal, K.A. and Bjorndal, K.A. (2007). 106 Changes Protect Sea Turtles in The Bahamas: Long-term Efforts Rewarded. SeaTurtles.org (Fig. 1).
Bjorndal, K.A. and Bolten, A.B. (2007). 106 Changes Protect Sea Turtles in The Bahamas: Long-term Efforts Rewarded. SeaTurtles.org (Fig. 1).

Figure 1: Green sea turtle swimming

Figure 2: Schematic of the capture method

Figure 3: Encircling turtles at their grazing patch

Figure 4: Esophageal lavage on green turtle

Figure 5: Diet sample separation over a sieve

Figure 6: UAVV (Unmanned aerial vehicle) underwater video

Figure 7: Juvenile green sea turtle foraging

Figure 8: Schematic of the capture method

Table 1: The 29 turtles we caught split up based on the tide and time of day during which they were caught

Table 2: The 7 turtles split up based on the time of day and tidal state during which they were observed

Table 3: The number of turtles we observed per hour of video footage in each tidal state

Table 4: The number of turtles we observed per hour of video footage in each time period

Figure 1: Green sea turtle swimming

Figure 2: Schematic capture method

Figure 3: Encircling turtles at their grazing patch

Figure 4: Esophageal lavage on green turtle

Figure 5: Diet sample separation over a sieve

Figure 6: UAVV (Unmanned aerial vehicle) underwater video

Figure 7: Juvenile green sea turtle foraging

Figure 8: Schematic of the capture method

Table 1: The 29 turtles we caught split up based on the tide and time of day during which they were caught

Table 2: The 7 turtles split up based on the time of day and tidal state during which they were observed

Table 3: The number of turtles we observed per hour of video footage in each tidal state

Table 4: The number of turtles we observed per hour of video footage in each time period

Figure 1: Green sea turtle swimming

Figure 2: Schematic capture method

Figure 3: Encircling turtles at their grazing patch

Figure 4: Esophageal lavage on green turtle

Figure 5: Diet sample separation over a sieve

Figure 6: UAVV (Unmanned aerial vehicle) underwater video

Figure 7: Juvenile green sea turtle foraging

Figure 8: Schematic of the capture method

Table 1: The 29 turtles we caught split up based on the tide and time of day during which they were caught

Table 2: The 7 turtles split up based on the time of day and tidal state during which they were observed

Table 3: The number of turtles we observed per hour of video footage in each tidal state

Table 4: The number of turtles we observed per hour of video footage in each time period

Figure 1: Green sea turtle swimming

Figure 2: Schematic capture method

Figure 3: Encircling turtles at their grazing patch

Figure 4: Esophageal lavage on green turtle

Figure 5: Diet sample separation over a sieve

Figure 6: UAVV (Unmanned aerial vehicle) underwater video

Figure 7: Juvenile green sea turtle foraging

Figure 8: Schematic of the capture method

Table 1: The 29 turtles we caught split up based on the tide and time of day during which they were caught

Table 2: The 7 turtles split up based on the time of day and tidal state during which they were observed

Table 3: The number of turtles we observed per hour of video footage in each tidal state

Table 4: The number of turtles we observed per hour of video footage in each time period