Lionfish are an invasive species in the Atlantic and Caribbean oceans that originally came from the Indo-Pacific. They were most likely brought from the Indo-Pacific to be sold in the aquarium trade, and then released out of home aquaria off the coast of South Florida. They have been so successful in the Western Atlantic for a number of reasons. They consume a wide range of fish and crustacean species, they have no natural known predators, they have immunity to local parasites, and they have incredibly high reproductive rates as they spawn every four days with up to 30,000 eggs, which collectively contributes to their success (Morris et al, 2008). Their overall impact has been detrimental to local marine ecosystems (Albins & Hixon 2011), include eating juvenile species like parrot fish which graze algae off the reefs and Nassau grouper which are economically important to the Bahamas. Current strategies for controlling their invasion include human interventions such as sparring and lionfish derbies. However, a natural biocidal through predation could be more effective (Mumby, et al 2011). Recently, grouper have been found with lionfish in their stomach, which suggests that grouper may be adapting to the presence of lionfish and seeing them as prey (Albins 2010; Mumby & Harborne 2011). This study investigates the possibility of a natural biocidal.

Hypothesis:
1. The more prey present on a reef will lead to more lionfish on a reef.
2. The more competitors present on a reef will lead to fewer lionfish on a reef.
3. The higher quality the reef is, the more abundant lionfish will be.

METHODS

Aim: How does the abundance of prey and competitors affect the presence of lionfish on patch reefs throughout South Eleuthera?

RESULTS

Fig 11. The correlation between lionfish abundance and prey abundance. The R² value shows us that there is no correlation between the two data sets.

Fig 13. The correlation between lionfish abundance and the area of the patch reefs. The R² value shows us that there is no correlation between the two data sets.

DISCUSSION

Our results are important because they provide insight into what factors allow lionfish to thrive and what appears to limit them. There is no direct correlation between prey abundance and lionfish abundance on the patch reefs of south Eleuthera. This contradicts our first hypothesis and may be due to the fact that lionfish can go three months without eating and that they eat a wide range of prey (Morris and Akins, 2008). Additionally it was found that with an increased number of competitors the lionfish presence decreased, supporting our second hypothesis. This could be because the lionfish are competing for food and living space with species such as Nassau grouper. Lastly, it was found that the size of the patch reef was not correlated with lionfish abundance but high reef complexity was, which supported our third hypothesis. This is most likely because lionfish usually reside under overhangs and in indents in the reef, so a complex reef would provide more habitats for them. The inverse relationship between competitor abundance and lionfish abundance should encourage people to reduce fishing pressure on lionfish competitors such as group, snapper and grunts. Furthermore, lionfish abundance could be reduced by using the species as alternative for the fishing industry.

ACKNOWLEDGMENTS

Our Advisors: Jocelyn Curtis-Quick, Isobel Flake, Kristine Magnussen and Luisa Acuna
Lad Akins, Director of Special Projects at REEF
Jason and the boathouse crew
The Island School
The Cape Eleuthera Institute

CITATIONS