Species diversity, distribution, and abundance of deepwater sharks
In the Exuma Sound, The Bahamas.

Anna Belk, Devin Caccavaro, Erik Canfield, Jane Drinkard, James Murray, Carter Wight

Research Advisors: Brooks, A., Brooks, E., Kiffoil, J., Piersia, M

Deepwater Fisheries

Background
The deep water ecosystem is the largest ecosystem on the planet, which makes up about 98% of the bodies of water on Earth. This ecosystem has been minimally explored and little research has been conducted in it. Fishermen moved from shallow waters that were overly exploited, offshore to deeper waters for a larger abundance of fish. Koslow (2000) conducted research showing that deepwater populations began depleting due to overfishing. Deepwater fisheries often catch non-target species of elasmobranches (sharks and rays) as bycatch (Barker 2004).

Commercial Shark Fisheries:
Sharks were also caught directly for valuable products such as shark fins and liver oil (McLaughlin et al, 2004). Barker (2004) conducted an evaluation of shark species for the Food and Agriculture Organization that showed there had been severe population declines for almost all of the 26 targeted species. The demand for these products has resulted in a more direct commercial shark fishing industry, which has shown to have reduced shark populations to extremely low levels and commercial extinction (Norse et al, 2011).

Methods

Study Location
This study took place in northeast Exuma Sound, The Bahamas, in six different zones (Figure 1 & 2).

Figure 1.2. Zones in the Exuma Sound, The Bahamas. And the Exuma Sound, The Bahamas.

Data Collection
Once a shark is caught length measurements, DNA samples, and tagging of the sharks are recorded (Figure 3).

Figure 3. Measuring, Tagging, and DNA samples

Deepwater survey lines
The deepwater survey lines are 1700 meters in length. They are anchored on the sea bottom of the Exuma Sound. The bottom 300 meters of this line lays on the ocean floor with 30-baited circle hooks; gauges 10, 12, 14 & 16. The depth and temperature recorder is also attached at the last 300-meter mark. The survey runs for four hours before being hauled to the surface. (Figure 4)

Figure 4. To put in perspective of how long the deepwater survey line is, it would be like fishing from the top of the Empire State Building.

Results

The results were combined with the existing data set from last fall. From September 2010 to December 2011, 63 deepwater survey lines were conducted at depths ranging from 473m to 1024m. 139 sharks were caught that comprised 9 different species. Species richness declined through zones (Figure 5.a). Both sixgill species decreased with increasing depth (Figure 5.c). Gulper increased with increasing depth, and Cuban Dogfish decrease with increasing depth (Figure 5.b). No significant trends seen in other species caught (Figure 5.d).

Table 1. Table showing various demographics of deepwater sharks caught.

<table>
<thead>
<tr>
<th>Species</th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
<th>Zone 4</th>
<th>Zone 5</th>
<th>Zone 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharkey</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Dogfish</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Metropolitan Dog</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Bigeye Sixgill</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

For 95% of deepwater sharks, extremely limited information is available. The remaining 5% of deepwater sharks have one of the lowest species productivity rates of all vertebrates on the planet.

Discussion

A significant trend throughout the survey was seen in species richness which declined with increased depth. This may be caused to harsher life conditions at deeper depths. These harsher conditions are potentially caused by upwelling, as supported by a study conducted on the mid Atlantic ridge in which less species were found in deeper waters because of lack of nutrients (Fossen et al, 2007). It is also concluded that there is possible prey competition and predator avoidance among the sharks due to the minimal abundance overlap. This was seen most prevalent in the gulper and Cuban dogfish which were found most abundant in different zones although, similar in size. It was also concluded from our findings that there may be sexual segregation among gulinper sharks due to the fact that 76% caught were females.

Directions for Future Research
• Satellite tags for tracking
• Deepwater light traps
• Adding further zones
• Seasonal variation
• Baseline for future studies

Acknowledgements

We would like to thank our research advisors, Edd Brooks and Annabelle Springer Sawtail. We would like to thank our research advisors, Edd Brooks and Annabelle Springer Sawtail.

References
Koslow (2000) a significant trend throughout the survey was seen in species richness which declined with increased depth. This may be caused to harsher life conditions at deeper depths. These harsher conditions are potentially caused by upwelling, as supported by a study conducted on the mid Atlantic ridge in which less species were found in deeper waters because of lack of nutrients (Fossen et al, 2007). A significant trend throughout the survey was seen in species richness which declined with increased depth. This may be caused to harsher life conditions at deeper depths. These harsher conditions are potentially caused by upwelling, as supported by a study conducted on the mid Atlantic ridge in which less species were found in deeper waters because of lack of nutrients (Fossen et al, 2007). A significant trend throughout the survey was seen in species richness which declined with increased depth. This may be caused to harsher life conditions at deeper depths. These harsher conditions are potentially caused by upwelling, as supported by a study conducted on the mid Atlantic ridge in which less species were found in deeper waters because of lack of nutrients (Fossen et al, 2007).