The metabolic response of bonefish (*Albula* spp.) in the Bahamian Archipelago to increased ocean temperature and acidity caused by global climate change

INTRODUCTION

Global climate change is an issue that impacts a wide range of marine ecosystems, thereby generating unnatural and potentially harmful behavioral and physiological responses from the organisms of these ecosystems (Karl and Trenberth 2003). Climate change is largely influenced by human interference with the earth's atmospheric composition (Karl and Trenberth 2003). The effects of a global warming trend are evident due to recent changes in global weather patterns, temperatures, and precipitation levels (Brierley and Kingsford 2009). Projected warming patterns for the future raise even more concern about the ecological and also socioeconomic consequences of climate change (Walther et al. 2002).

One of the major ecological groups impacted by climate change is the marine environment. Little research has been conducted on tropical marine ecosystems, and they are therefore the hardest aquatic habitats to evaluate in terms of tropical fishes' reactions to climate change (Hoxie et al. 2004). One study highlighted the effects of global warming on fish physiology. This experiment on tropical coral reef fish in Australia found that combined variables of augmented water temperature and acidity increased the oxygen consumption and mortality rates of fish. When dealing with stressors, fish allocate less energy to basic survival behaviors such as foraging, escaping predators, and reproducing (Munday et al. 2009).

Bonefish are critical contributors to the tropical flats ecosystems of the Bahamian Archipelago (Danylchuk et al.). In addition, recreational bonefish angling generates 141 million dollars annually for the Bahamian economy (Danylchuk et al.). Despite the ecological and economic importance of bonefish, relatively little information is known about this species. The purpose of this study was to examine how climate change affects the metabolic rates of bonefish (*Albula* spp.). The hypothesis was that if exposed to increased temperature and acidity treatments, bonefish would have elevated oxygen consumption rates and stress levels.

METHODLOGY

This study was conducted at the Cape Eleuthera Institute (CEI) on Eleuthera, The Bahamas during the fall of 2010. Using a seine net, bonefish (*Albula* spp.) from local tidal creeks were caught and transported to the CEI wet labs. The water in the acclimation tank was adjusted over a 24 hour period from normal ocean temperature and acidity levels (33°C and 8.1 ppt, respectively) to higher norm temperature (33°C, 34° or 7.8, 7.6, 7.4 ppt). Heaters were immersed in the water to increase temperature, and carbon dioxide was bubbled into the water to increase acidity. Conditions were regulated by means of a pH controller monitor and a thermostat. After an acclimation period of 7 days, the weights and volumes of fish were taken, as these two factors affect the metabolic rate of each fish. The bonefish were then placed in respirometry chambers and their rates of oxygen consumption were measured (Figure 3). The respirometer consists of four individual chambers placed in a tank, and each chamber is outfitted with an oxygen probe that allows for simultaneous monitoring of oxygen consumption from 4 fish (Figure 4). Data on the standard metabolic rate of bonefish was collected overnight when there were few disturbances (Munday et al. 2009).

Immediately following the respirometry period, the bonefish were moved to an exercise tank where predatory activity was simulated (Figure 5). The amount of time that it took each fish to become exhausted was measured. Bonefish were then tagged and released.

One-way ANOVA tests were performed in order to determine whether the oxygen consumption and swimming performance of control bonefish differed significantly from that of the treatment bonefish. A one-way ANOVA was also used to determine if there were significant differences between fish lengths between different treatment groups.

RESULTS

An increase in temperature or acidity did not have any significant affect on the metabolic rates of bonefish (Table 1). There was not a significant difference between the amounts of oxygen consumed by control bonefish at the 30°C temperature level, and treatment bonefish at the increased levels of 33°C and 34°C (Figure 6). An increase in the CO₂ acidification of the water also did not have a significant impact on the oxygen consumption of the bonefish. The average oxygen consumption rates associated with different acidity levels were too closely related to show any significant distinction between the control and 7.8, 7.6 and 7.4 ppt (Figure 7). In both the temperature and acidity treatment groups, there was no considerable difference in the size of fish between the separate treatment groups (Table 2).

The data collected during the exercise period for the bonefish revealed similar results to the findings on the fish's oxygen consumption. There was no significant variation in the number of seconds that it took the control bonefish and the treatment fish of both temperature and acidity treatments to become exhausted while swimming, as supported by statistical analyses (Table 1, Figures 8 and 9, respectively).

DISCUSSION

According to the results of this study, increased water temperatures and acidities produced no significant change in the oxygen consumption rates of bonefish. The exercise data showed that the swimming performance of the bonefish was also not impacted by exposure to the treatment variables.

Bonefish were expected to exhibit increased oxygen consumption rates when exposed to temperatures and acidities higher than ambient ocean levels. The results of the study do not support this hypothesis. These results also disagree with findings of related studies, such as the experiment conducted on coral reef fish in Australia (Munday et al. 2009).

The conclusions of this study suggest that bonefish are very adaptable to variations in natural water conditions caused by anthropogenic climate change. This high tolerance of bonefish can be attributed to the relatively “harsh” environments that these fish inhabit. The shallow water and near-shore location of mangrove flats ecosystems expose these habitats to perturbations like acid rain and changes in temperature due to tidal shifts. Consequently, the marine species of flats ecosystems, namely bonefish, have developed a high resilience to the disturbances of climate change (Albo et al. 2007).

Further research needs to be conducted on tropical fishes’ oxygen consumption in order to improve understanding of the impacts of climate change on these fish. Future studies could include focusing on a wider variety of tropical fish species and locations, increasing the magnitude of treatment variables, or exposing fish to combined treatment variables. Future experiments should also increase the number of fish in each treatment group, as the bonefish sample sizes for this study were much smaller than ideal.