Diadema antillarum: Observing Populations in the Cape Eleuthera Area

Margot Goldstein, Marty Morris, Leslie Panella, Cicely Schonberg, Jeramiah Simms, & Jasmine Wilchcombe

Advisors: Hannah Berardi & Ben Dougherty

Introduction

The coral reefs of the Western Atlantic Ocean have undergone several dramatic changes in the past two decades due to both natural and anthropogenic factors. In 1983, there was a mass mortality of Diadema antillarum (Fig. 1), the long-spined black sea urchin, of over 95% of the populations in the Western Atlantic (Lessios 1988). Diadema are keystone algal grazers on reefs, so this led almost immediately to the out-competition of coral by macroalgae (Fig. 2) (Engeman 2002) making it a major factor in a phase shift from coral to macroalgae dominated (Edmunds and Carpenter 2001). This left many organisms without food and shelter, and human economies dependent on the reefs for fishing and tourism may have been negatively affected.

In the last two decades, recovery has been documented in areas such as Barbados (Hunte and Younglao 1988), Panama (Lessios 2005) and the Florida Keys (Chiappone et al. 2002). This recovery has been linked to an increase in scleractinian corals, particularly Elkhorn and Staghorn coral, and a decrease in macroalgae (Edmunds and Carpenter 2001).

In January 2006, Diadema were sighted at Fourth Hole, Cape Eleuthera, and in 2007 the Diadema research group was started at The Island School. The purpose of this study was to gather new abundance, size, and benthic assessment data from previously studied sites on Cape Eleuthera. The objective was to compare this data with baseline data from Spring 2003 to obtain information on the recovery of Diadema and its effects on reefs in the Cape Eleuthera area.

Methods

The study was conducted at seven different sites on Cape Eleuthera (Fig. 3). Sites were located close together for similar conditions, including relative distance from shore and depth. ABUNDANCE, UsABLE HABITAT, AND SIZE

At each site, six 10m x 2m transects (Fig. 4) were conducted and abundance of Diadema was noted, checking under rocks and in crevices. Any usable habitat, such as hard substrates with cracks and crevices, that crossed into the transect belt was measured. To determine size, maximum test diameter of Diadema was measured using bow calipers (Fig. 5).

BENTHIC COMPOSITION

0.25 m² quadrats were centered at the 0, 5, and 10 meter marks on the transect. Composition was divided into 10 subdivisions: macroalgae (M), sand (S), man-made rubble (MR), limestone rubble (LR), coral rubble (CR), hard coral (HC), soft coral (SC), rock (R), sponge (SP) and sea grass (SG). Subdivisions represented in each quadrat were then grouped into five percentage categories (Fig. 6) based on cover of the quadrat. Specifically, both abiotic and biotic cover were measured into those percentage categories.

Results

In the seven sites surveyed, there was a mean density of 0.8 Diadema per m² of usable habitat. Densities ranged from 0 to 2.1 Diadema per m² of usable habitat (Fig 10). Sizes ranged from 15 to 112 mm. The most consistent factor observed in benthic composition was macroalgae, which was present in over 90% of the quadrant samples. In all of the sites there was a healthy amount of both juvenile and mature specimens. The abundance of the Diadema was also affected by the amount of macroalgae cover; where there was more macroalgae, there was a larger amount of Diadema. There were some places however, where there was still a large amount of macroalgae, but a low abundance of Diadema. At Site F (Mouth of No Name), there was large algal cover but there was an average of 1.6 Diadema per transect. In comparison, Site D (Mouth of the Marina North) had an average of 29 Diadema per transect but had a very similar amount of algal cover and usable habitat.

Even though we can observe some differences between this semester and last semester’s data results, there was no statistically significant difference (p>0.05) between them. While there were a few decreases in mean size, abundance and usable habitat there was a large increase in usable habitat at Site A (South of the Marina). Site A was the only site that had a statistically significant change in usable habitat.

Discussion

RECRUITMENT

Although there was no statistically significant change in either density or size, there appeared to be fewer juvenile Diadema present at three of our sites. This was contradictory to expectations of this study because Diadema spawn in early summer and late fall with a four to six week delay between peak spawning and peak recruitment (Hunte and Younglao, 1988). As most of the data was collected during mid to late fall, the presence of more juveniles in this area was expected. Diadema recruitment could have been affected by many factors, which in turn would have affected the number of small Diadema present on the reefs. Wind could potentially have been a major factor in larval recruitment. Up until recently, all of the sites – which were grouped on the southern side of the Cape – were given some wind cover by the trees and land. However, recent clear cutting could have allowed the wind to have a much greater effect on the surface currents in this area. These new currents would have then carried larval Diadema away from these sites.

DENSITY

Another factor that could have affected recruitment is density. Preceding the mass mortality, densities across the Caribbean ranged from 1.1 to 14.4 Diadema per m² (Lessios 1988). This would have affected recruitment because juvenile Diadema thrive on reefs with large adult populations (Hunte and Younglao, 1988). The densities of this study ranged from 0.1 to 1.9 Diadema per m², which falls at the extreme low end of the pre-mortality densities. Juvenile Diadema could be settling at reefs, down current with larger adult populations.

OVERALL POPULATION CHANGES

There are several possibilities as to why an overall population in was not observed. Possibilities outside of this study include changing conditions in habitat due to reduced, changing seasonal temperatures, delay between spawning and recruitment, increase in predation, or the presence of different species at the sites. Overall, signs of a phase shift reversal in the Cape Eleuthera area were not observed and macroalgae remains the most common benthic cover.

Acknowledgements

The Island School and Cape Eleuthera Institute for support and encouragement of our research project. Hannah Berardi and Ben Dougherty for directing and advising us. Annabelle Orton for providing us with her guidance in the scientific process.